
Rue de Stassart, 36 • B-1050 Bruxelles
Tel : +32 2 550 08 11 • Fax : +32 2 550 08 19

EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

WORKSHOP CWA 14050-7

AGREEMENT November 2000

ICS 35.200; 35.240.40

Extensions for Financial Services (XFS) interface specification -
Release 3.0 - Part 7: Check Reader/Scanner Device Class Interface

© 2000 CEN All rights of exploitation in any form and by any means reserved world-wide for
CEN National Members

Ref. No CWA 14050-7:2000 E

This CEN Workshop Agreement can in no way be held as being an official standard
as developed by CEN National Members.

Page 2
CWA 14050-7:2000

Table of Contents

Foreword 3

1. Introduction 5

1.1 Background to Release 3.0 5

1.2 XFS Service-Specific Programming.. 5

2. Check Readers and Scanners... 7

3. References... 8

4. Info Commands.. 9

4.1 WFS_INF_CHK_STATUS.. 9

4.2 WFS_INF_CHK_CAPABILITIES.. ... 10

4.3 WFS_INF_CHK_FORM_LIST... 11

4.4 WFS_INF_CHK_MEDIA_LIST 11

4.5 WFS_INF_CHK_QUERY_FORM.. 12

4.6 WFS_INF_CHK_QUERY_MEDIA... 13

4.7 WFS_INF_CHK_QUERY_FIELD 15

5. Execute Commands... 17

5.1 WFS_CMD_CHK_PROCESS_FORM... 17

5.2 WFS_CMD_CHK_RESET... 19

6. Events 21

6.1 WFS_EXEE_CHK_NOMEDIA.. ... 21

6.2 WFS_EXEE_CHK_MEDIAINSERTED.. 21

6.3 WFS_SRVE_CHK_MEDIAINSERTED.. 21

6.4 WFS_EXEE_CHK_FIELDERROR .. 21

6.5 WFS_EXEE_CHK_FIELDWARNING.. 22

6.6 WFS_USRE_CHK_INKTHRESHOLD .. 22

6.7 WFS_SRVE_CHK_MEDIADETECTED .. 22

7. Forms Language Usage 23

7.1 Definition Syntax... 23

7.2 XFS form/media definition files in multi-vendor environments .. 24

7.3 Form and Media Measurements 24

7.4 Form Definition 25

7.5 Field Definition 26

7.6 Media Definition 29

8. C - Header file 30

Page 3
CWA 14050-7:2000

3

Foreword

This CWA is revision 3.0 of the XFS interface specification.

The move from an XFS 2.0 specification (CWA 13449) to a 3.0 specification has been prompted by a series of
factors.

Initially, there has been a technical imperative to extend the scope of the existing specification of the XFS Manager
to include new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now
over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards
this release.

The clear direction of the CEN/ISSS XFS Workshop, therefore, is the delivery of a new Release 3.0 specification
based on a C API. It will be delivered with the promise of the protection of technical investment for existing
applications and the design to safeguard future developments.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2000-10-18. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.0.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.0
(see CWA 13449) to Version 3.0 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Page 4
CWA 14050-7:2000

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to
Version 3.0 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA)
- Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

Revision History:

1.0 May 24, 1993 Initial release of API and SPI specification
1.01 June 11, 1993 Minor updates to BSVC member contact list.
1.1 April 14, 1994 Major updates and additions.
1.11 February 3, 1995 Separation of specification into separate documents for API/SPI

and service class definitions; with updates
3.00 October 18, 2000 Update release encompassing:

- Reintroduced with a command set targeted at stand alone check
readers and scanners
– UNICODE support

Page 5
CWA 14050-7:2000

5

1. Introduction

1.1 Background to Release 3.0

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi vendor
software by encouraging the participation of both banks and vendors to take part in the deliberations of the creation
of an industry standard. This move towards opening the participation beyond the BSVC's original membership has
been very succesful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both service
providers and application developers. This has been achieved to date by sub groups working electronically and
quarterly meetings.

The move from an XFS 2.0 specification to a 3.0 specification has been prompted by a series of factors. Initially,
there has been a technical imperative to extend the scope of the existing specification of the XFS Manager to include
new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now
over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards
this release.

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.0 specification based on a C
API. It will be delivered with the promise of the protection of technical investment for existing applications and the
design to safeguard future developments.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of service
providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial
Services is to standardize command codes and structures for the broadest variety of services. For example, using the
WFSExecute function, the commands to read data from various services are as similar as possible to each other in
their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the sets of specific capabilities
likely to be provided by the developers of the services of that class; thus any particular device will normally support
only a subset of the command set defined for the class.

There are three cases in which a service provider may receive a service-specific command that it does not support:

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is not considered to
be fundamental to the service. In this case, the service provider returns a successful completion, but does no
operation. An example would be a request from an application to turn on a control indicator on a passbook
printer; the service provider recognizes the command, but since the passbook printer it is managing does not
include that indicator, the service provider does no operation and returns a successful completion to the
application.

Page 6
CWA 14050-7:2000

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is considered to be
fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling
application. An example would be a request from an application to a cash dispenser to dispense coins; the
service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes,
returns this error.

� The requested capability is not defined for the class of service providers by the XFS specification. In this case,
a WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.
This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

Page 7
CWA 14050-7:2000

7

2. Check Readers and Scanners

This specification describes the XFS service class of check readers and scanners. Check image scanners are treated
as a special case of check readers, i.e., image-enabled instances of the latter. This class includes devices with a range
of features, from small hand-held read-only devices through which checks are manually swiped one at a time, to
desktop units which automatically feed the check one at a time; recording the MICR data and check image, and
endorse or encode the check. The specification of this service class includes definitions of the service-specific
commands that can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo
functions.

In the U.S., checks are always encoded in magnetic ink for reading by Magnetic Ink Character Recognition (MICR),
and a single font is always used. In Europe some countries use MICR and some use Optical Character Recognition
(OCR) character sets, with different fonts, for their checks.

In all countries, typical fields found encoded on a check include the bank ID number and the account number. Part
of the processing done by the bank is to also encode the amount on the check, usually done by having an operator
enter the handwritten or typewritten face amount on a numeric keypad.

This service class is currently defined only for attended branch service

Page 8
CWA 14050-7:2000

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.00, October 18, 2000

Page 9
CWA 14050-7:2000

9

4. Info Commands

4.1 WFS_INF_CHK_STATUS

Description This function is used to query the status of the device and the service.

Input Param None.

Output Param LPWFSCHKSTATUS lpStatus;

struct _wfs_chk_status
{
WORD fwDevice;
WORD fwMedia;
WORD fwInk;
LPSTR lpszExtra;
} WFSCHKSTATUS, * LPWFSCHKSTATUS;

fwDevice
Specifies the state of the check reader device as one of:
Value Meaning
WFS_CHK_DEVONLINE The device is online (i.e., powered on and operable).
WFS_CHK_DEVOFFLINE The device is offline (e.g., the operator has taken the

device offline by turning a switch or pulling out the
device).

WFS_CHK_DEVPOWEROFF The device is powered off or physically not
connected.

WFS_CHK_DEVNODEVICE There is no device intended to be there; e.g. this type
of self service machine does not contain such a
device or it is internally not configured.

WFS_CHK_DEVHWERROR The device is inoperable due to a hardware error.
WFS_CHK_DEVUSERERROR The device is inoperable because a person is

preventing proper device operation.
WFS_CHK_DEVBUSY The device is busy and unable to process an execute

command at this time.

fwMedia
Specifies the status of the media in the check reader as one of:
Value Meaning
WFS_CHK_MEDIANOTSUPP The capability to report the state of the check media

is not supported by the device.
WFS_CHK_MEDIANOTPRESENT No media is inserted in device.
WFS_CHK_MEDIAREQUIRED Insertion of media required.
WFS_CHK_MEDIAPRESENT Media inserted in device.
WFS_CHK_MEDIAJAMMED Media jam in device.

fwInk
Specifies the status of the ink in the check reader as one of:
Value Meaning
WFS_CHK_INKNOTSUPP Capability not supported by the device.
WFS_CHK_INKFULL Ink supply in device is full.
WFS_CHK_INKLOW Ink supply in device is low.
WFS_CHK_INKOUT Ink supply in device is empty.

lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of “key=value” strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

Page 10
CWA 14050-7:2000

4.2 WFS_INF_CHK_CAPABILITIES

Description This function is used to request device capability information.

Input Param None.

Output Param LPWFSCHKCAPS lpCaps;

typedef struct _wfs_chk_caps
{
WORD wClass;
WORD fwType;
BOOL bCompound;
BOOL bMICR;
BOOL bOCR;
BOOL bAutoFeed;
BOOL bEndorser;
BOOL bEncoder;
WORD fwStamp;
WORD wImageCapture;
LPSTR lpszFontNames;
LPSTR lpszEncodeNames;
WORD fwCharSupport;
LPSTR lpszExtra;
} WFSCHKCAPS, * LPWFSCHKCAPS;

fwClass
Specifies the logical service; value is WFS_SERVICE_CLASS_CHK.

fwType
Specifies the type of the physical device; only current value is WFS_CHK_TYPECHK.

bCompound
TRUE if the logical device is part of a compound device.

bMICR
TRUE if the device can read MICR on checks.

bOCR
TRUE if the device can read OCR on checks.

bAutoFeed
TRUE if the device has autofeed capability; FALSE if only manual feed.

bEndorser
TRUE if a programmable endorser is present.

bEncoder
TRUE if an encoder is present.

fwStamp
Specifies the physical dimensions of the check where the endorser stamp can be used. A single
value can be returned.
Value Meaning
WFS_CHK_STAMPNONE Device cannot stamp/endorse check.
WFS_CHK_STAMPFRONT Device can stamp/endorse front of check.
WFS_CHK_STAMPBACK Device can stamp/endorse back of check.
WFS_CHK_STAMPBOTH Device can stamp/endorse both sides of the check.

wImageCapture
Specifies the physical dimensions that can be image captured. A single value can be returned.
Value Meaning
WFS_CHK_ICAPNONE Device cannot capture image.
WFS_CHK_ICAPFRONT Device can image capture front of check.
WFS_CHK_ICAPBACK Device can image capture back of check.
WFS_CHK_ICAPBOTH Device can image capture both sides of the check.

Page 11
CWA 14050-7:2000

11

lpszFontNames
The names of the fonts supported for reading; each is terminated with a NULL and the string is
terminated with two NULLs. Reserved font names include CMC7 and E13B.

lpszEncodeNames
The names of the fonts supported for encoding; each is terminated with a NULL and the string
is terminated with two NULLs.

fwCharSupport
One or more flags specifying the Character Sets, in addition to single byte ASCII, that is
supported by the service provider:
Value Meaning
WFS_CHK_ASCII ASCII is supported for XFS forms.
WFS_CHK_UNICODE UNICODE is supported for XFS forms.

For fwCharSupport, a service provider can support ONLY ASCII forms or can support BOTH
ASCII and UNICODE forms. A service provider can not support UNICODE forms without also
supporting ASCII forms.

lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of “key=value” strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command

Comments The font names are standardized so that applications can check for standard literals, e.g.: CMC7,
E13B. Reserved OCR font names are TBD due to numerous local variants. (i.e. OCRA and OCRB
are not enough).

Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

4.3 WFS_INF_CHK_FORM_LIST

Description This function is used to retrieve the list of forms available to the service.

Input Param None.

Output Param LPSTR lpszFormList;

lpszFormList
Points to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command

4.4 WFS_INF_CHK_MEDIA_LIST

Description This command is used to retrieve the list of media definitions available on the device.

Input Param None.

Output Param LPSTR lpszMediaList;

lpszMediaList
Pointer to a list of null-terminated media names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command

Comments None.

Page 12
CWA 14050-7:2000

4.5 WFS_INF_CHK_QUERY_FORM

Description This function is used to retrieve the details on the definition of a specified form.

Input Param LPSTR lpszFormName ;

lpszFormName
Specifies the null-terminated name of the form on which to retrieve details.

Output Param LPWFSCHKFRMHEADER lpFormHeader;

typedef struct _wfs_chk_frm_header
{
LPSTR lpszFormName;
WORD wBase;
WORD wUnitX;
WORD wUnitY;
WORD wWidth;
WORD wHeight;
WORD wAlignment;
WORD wOffsetX;
WORD wOffsetY;
WORD wVersionMajor;
WORD wVersionMinor;
WORD fwCharSupport;
LPSTR lpszFields;
} WFSCHKFRMHEADER, * LPWFSCHKFRMHEADER;

lpszFormName
Specifies the null-terminated name of the form.

wBase
Specifies the base unit of measurement of the form and can be one of the following:
Value Meaning
WFS_CHK_INCH The base unit is inches.
WFS_CHK_MM The base unit is millimeters.
WFS_CHK_ROWCOLUMN The base unit is rows and columns.

wUnitX
Specifies the horizontal resolution of the base units as a fraction of the wBase value. For
example, a value of 16 applied to the base unit WFS_CHK_INCH means that the base
horizontal resolution is 1/16".

wUnitY
Specifies the vertical resolution of the base units as a fraction of the wBase value. For example,
a value of 10 applied to the base unit WFS_CHK_MM means that the base vertical resolution is
0.1 mm.

wWidth
Specifies the width of the form in terms of the base horizontal resolution.

wHeight
Specifies the height of the form in terms of the base vertical resolution.

wAlignment
Specifies the relative alignment of the form on the media and can be one of the following:
Value Meaning
WFS_CHK_TOPLEFT The form is aligned relative to the top and left edges of

the media.
WFS_CHK_TOPRIGHT The form is aligned relative to the top and right edges of

the media.
WFS_CHK_BOTTOMLEFT The form is aligned relative to the bottom and left edges

of the media.
WFS_CHK_BOTTOMRIGHT The form is aligned relative to the bottom and right edges

of the media.

Page 13
CWA 14050-7:2000

13

wOffsetX
Specifies the horizontal offset of the position of the top-left corner of the form, relative to the
left or right edge specified by wAlignment. This value is specified in terms of the base
horizontal resolution and is always positive.

wOffsetY
Specifies the vertical offset of the position of the top-left corner of the form, relative to the top
or bottom edge specified by wAlignment. This value is specified in terms of the base vertical
resolution and is always positive.

wVersionMajor
Specifies the major version of the form.

wVersionMinor
Specifies the minor version of the form.

fwCharSupport
A single flag specifying the Character Set in which the form is encoded:
Value Meaning
WFS_CHK_ASCII ASCII is supported for XFS forms initial data values and

FORMAT strings.
WFS_CHK_UNICODE UNICODE is supported for XFS forms initial data values

and FORMAT strings.
lpszFields
Pointer to a list of null-terminated field names, with the final name terminating with two null
characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:
Value Meaning
WFS_ERR_CHK_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_CHK_FORMINVALID The specified form is invalid.

4.6 WFS_INF_CHK_QUERY_MEDIA

Description This command is used to retrieve details of the definition of a specified media.

Input Param LPSTR lpszMediaName ;

lpszMediaName
Pointer to the null-terminated media name about which to retrieve details.

Output Param LPWFSCHKFRMMEDIA lpFormMedia;

typedef struct _wfs_chk_frm_media
{
WORD fwMediaType;
WORD wBase;
WORD wUnitX;
WORD wUnitY;
WORD wSizeWidth;
WORD wSizeHeight;
WORD wCheckAreaX;
WORD wCheckAreaY;
WORD wCheckAreaWidth;
WORD wCheckAreaHeight;
WORD wRestrictedAreaX;
WORD wRestrictedAreaY;
WORD wRestrictedAreaWidth;
WORD wRestrictedAreaHeight;
} WFSCHKFRMMEDIA, * LPWFSCHKFRMMEDIA;

Page 14
CWA 14050-7:2000

fwMediaType
Specifies the type of media as one of the following flags:
Value Meaning
WFS_CHK_MEDIACHECK Check media.

wBase
Specifies the base unit of measurement of the form and can be one of the following:
Value Meaning
WFS_CHK_INCH The base unit is inches.
WFS_CHK_MM The base unit is millimeters.
WFS_CHK_ROWCOLUMN The base unit is rows and columns.

wUnitX
Specifies the horizontal resolution of the base units as a fraction of the wBase value. For
example, a value of 16 applied to the base unit WFS_CHK_INCH means that the base
horizontal resolution is 1/16".

wUnitY
Specifies the vertical resolution of the base units as a fraction of the wBase value. For example,
a value of 10 applied to the base unit WFS_CHK_MM means that the base vertical resolution is
0.1 mm.

wSizeWidth
Specifies the width of the media in terms of the base horizontal resolution.

wSizeHeight
Specifies the height of the media in terms of the base vertical resolution.

wCheckAreaX
Specifies the horizontal offset of the Check area relative to the top left corner of the media in
terms of the base horizontal resolution.

wCheckAreaY
Specifies the vertical offset of the Check area relative to the top left corner of the media in terms
of the base vertical resolution.

wCheckAreaWidth
Specifies the Check area width of the media in terms of the base horizontal resolution.

wCheckAreaHeight
Specifies the Check area height of the media in terms of the base vertical resolution.

wRestrictedAreaX
Specifies the horizontal offset of the restricted area relative to the top left corner of the media in
terms of the base horizontal resolution.

wRestrictedAreaY
Specifies the vertical offset of the restricted area relative to the top left corner of the media in
terms of the base vertical resolution.

wRestrictedAreaWidth
Specifies the restricted area width of the media in terms of the base horizontal resolution.

wRestrictedAreaHeight
Specifies the restricted area height of the media in terms of the base vertical resolution.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:
Value Meaning
WFS_ERR_CHK_MEDIANOTFOUND The specified media definition cannot be found.
WFS_ERR_CHK_MEDIAINVALID The specified media definition is invalid.

Comments None.

Page 15
CWA 14050-7:2000

15

4.7 WFS_INF_CHK_QUERY_FIELD

Description This function is used to retrieve details on the definition of a single or all fields on a specified
form.

Input Param LPWFSCHKQUERYFIELD lpQueryField;

typedef struct _wfs_chk_query_field
{
LPSTR lpszFormName;
LPSTR lpszFieldName;
} WFSCHKQUERYFIELD, * LPWFSCHKQUERYFIELD;

lpszFormName
Points to the null-terminated form name.

lpszFieldName
Pointer to the null-terminated name of the field about which to retrieve details.
If the value of lpszFieldName is a NULL pointer, then details are retrieved for all fields on the
form. Depending upon whether the form is encoded in UNICODE representation either the
lpszInitialValue or lpszUNICODEInitialValue output fields are used to retrieve the field Initial
Value.

Output Param LPWFSCHKFRMFIELD * lppFields ;
lppFields
Pointer to a null-terminated array of pointers to field definition structures:

typedef struct _wfs_chk_frm_field
{
LPSTR lpszFieldName;
WORD fwType;
WORD fwClass;
WORD fwAccess;
WORD fwOverflow;
LPSTR lpszInitialValue;
LPWSTR lpszUNICODEInitialValue;
LPSTR lpszFormat;
LPWSTR lpszUNICODEFormat;
} WFSCHKFRMFIELD, * LPWFSCHKFRMFIELD;

lpszFieldName
Pointer to the null-terminated field name.

fwType
Specifies the type of field and can be one of the following:
Value Meaning
WFS_CHK_FIELDTEXT A text field.
WFS_CHK_FIELDMICR A Magnetic Ink Character Recognition (MICR) field.
WFS_CHK_FIELDOCR An Optical Character Recognition (OCR) field.
WFS_CHK_FIELDGRAPHIC A Graphic field

fwClass
Specifies the class of the field and can be one of the following:
Value Meaning
WFS_CHK_CLASSSTATIC The field data cannot be set by the application.
WFS_CHK_CLASSOPTIONAL The field data can be set by the application.
WFS_CHK_CLASSREQUIRED The field data must be set by the application.

fwAccess
Specifies whether the field is to be used for input, output, or both and can be a combination of
the following bit-flags:
Value Meaning
WFS_CHK_ACCESSREAD The field is used for input.
WFS_CHK_ACCESSWRITE The field is used for output.

Page 16
CWA 14050-7:2000

fwOverflow
Specifies how an overflow of field data should be handled and can be one of the following:
Value Meaning
WFS_CHK_OVFTERMINATE Return an error and terminate printing of the form.
WFS_CHK_OVFTRUNCATE Truncate the field data to fit in the field.
WFS_CHK_OVFBESTFIT Fit the text in the field.
WFS_CHK_OVFOVERWRITE Print the field data beyond the extents of the field

boundary.
WFS_CHK_OVFWORDWRAP If the field can hold more than one line the text is

wrapped around.

lpszInitialValue
The initial value of the field when the field is written as output.

lpszUNICODEInitialValue
The initial value of the field when form is encoded in UNICODE.

lpszFormat
Format string as defined in the form for this field.

lpszUNICODEFormat
Format string as defined in the form for this field when form is encoded in UNICODE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_CHK_FORMINVALID The specified form is invalid.
WFS_ERR_CHK_FIELDNOTFOUND The specified field cannot be found.
WFS_ERR_CHK_FIELDINVALID The specified field is invalid.
WFS_ERR_CHK_CHARSETDATA The character set(s) found is not supported by

the service provider.

Page 17
CWA 14050-7:2000

17

5. Execute Commands

5.1 WFS_CMD_CHK_PROCESS_FORM

Description This function initiates feeding and processing of a check. Based on the form definition and
dwOptions field, the MICR/OCR data is read, check image is scanned, check is endorsed, and
MICR/OCR is written. Depending upon the check reader/scanner unit, for each
WFS_CMD_CHK_PROCESS_FORM command executed, a single feed/eject of the check will
usually occur.

If the invoking application needs to read the check MICR/OCR data prior to knowing what to
write to the check in the form of endorsement data or MICR/OCR data then a
WFS_CMD_CHK_PROCESS_FORM command must first be executed with a null
lpszOutputFields field or dwOptions field set to WFS_CHK_NO_WRITE followed by another
WFS_CMD_CHK_PROCESS_FORM command with appropriate lpszOutputFields field content
to be written.

Input Param LPWFSCHKINPROCESSFORM lpChkInProcessForm;

typedef struct _wfs_chk_in_process_form
{
LPSTR lpszFormName;
LPSTR lpszMediaName;
LPSTR lpszInputFields;
LPSTR lpszOutputFields;
LPWSTR lpszUNICODEOutputFields;
DWORD dwOptions;
} WFSCHKINPROCESSFORM, * LPWFSCHKINPROCESSFORM;

lpszFormName
Points to the null-terminated name of the form

lpszMediaName
Points to the null-terminated media name.

lpszInputFields
Pointer to a list of null-terminated field names from which to read input data, with the final
name terminating with two null characters. If lpszInputFields contains two null characters then
no data is read (no MICR/OCR fields are read).

lpszOutputFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-
terminated with the entire field string terminating with two null characters. If lpszOutputFields
contains two null characters then no data is written (no data is endorsed and no MICR/OCR is
written).

lpszUNICODEOutputFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is
null-terminated with the entire field string terminating with two null characters.
The lpszUNICODEOutputFields field should only be used if the form is encoded in UNICODE
representation. This can be determined with the WFS_CHK_INF_QUERY_FORM command.

dwOptions
One or more of the following flags are set.
Value Meaning
WFS_CHK_OPT_AUTOFEED Auto feed check (Check automatically feed and

ejected)
WFS_CHK_OPT_ICAPFRONT Image capture (scan image) front of check.
WFS_CHK_OPT_ICAPBACK Image capture (scan image) back of check.
WFS_CHK_OPT_NO_MICR_OCR Do not read MICR/OCR fields.
WFS_CHK_OPT_NO_WRITE Do not write text or graphic output fields.

Page 18
CWA 14050-7:2000

Output Param LPWFSCHKOUTPROCESSFORM lpOutProcessForm;

typedef struct _wfs_chk_out_process_form
{
LPSTR lpszInputFields;
LPWSTR lpszUNICODEInputFields;
WORD wFrontImageType;
ULONG ulFrontImageSize;
LPBYTE lpFrontImage;
WORD wBackImageType;
ULONG ulBackImageSize;
LPBYTE lpBackImage;
} WFSCHKOUTPROCESSFORM, * LPWFSCHKOUTPROCESSFORM;

lpszInputFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-
terminated with the entire input field string terminating with two null characters.
Contains a sequence such as (given a U.S. personal check):

ROUTETRANS=021203501\0 ACCOUNT=370361\0 TRANCODE=2199\0 AMOUNT=000000
1000 \0\0

lpszUNICODEInputFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is
null-terminated with the entire input field string terminating with two null characters.

wFrontImageType
Specifies the format of the front of the check image returned by this command as one of the
following flags:
Value Meaning
WFS_CHK_IMAGETIF The returned image is in TIF format.
WFS_CHK_IMAGEMTF The returned image is in MTF format (Metafile format)
WFS_CHK_IMAGEBMP The returned image is in BMP format.

ulFrontImageSize
Count of bytes of front of check image data.

lpFrontImage
Points to the front of check image data.

wBackImageType
Specifies the format of the back of the check image returned by this command as one of the
following flags:
Value Meaning
WFS_CHK_IMAGETIF The returned image is in TIF format.
WFS_CHK_IMAGEMTF The returned image is in MTF format (Metafile format)
WFS_CHK_IMAGEBMP The returned image is in BMP format.

ulBackImageSize
Count of bytes of back of check image data.

lpBackImage
Points to the back of check image data.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_REQDFIELDMISSING A required field is missing on the check.
WFS_ERR_CHK_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_CHK_FORMINVALID The specified form definition is invalid.
WFS_ERR_CHK_MEDIANOTFOUND The specified media definition cannot be found.
WFS_ERR_CHK_MEDIAINVALID The specified media definition is invalid.
WFS_ERR_CHK_MEDIAOVERFLOW The form overflowed the media.
WFS_ERR_CHK_FIELDSPECFAILURE The syntax of the lpszInputFields or

lpszOutputFields member is invalid.

Page 19
CWA 14050-7:2000

19

WFS_ERR_CHK_FIELDERROR An error occurred while processing a field,
causing termination of the read request. An
execute event
WFS_EXEE_CHK_FIELDERROR is posted
with the details.

WFS_ERR_CHK_CHARSETDATA Character set(s) supported by service provider is
inconsistent with use of lpszOutputField or
lpszUNICODEOutputField.

WFS_ERR_CHK_MEDIAJAM The media is jammed. Operator intervention is
required.

WFS_ERR_CHK_SHUTTERFAIL The device is unable to open and/or close it’s
shutter.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WFS_EXEE_CHK_NOMEDIA No check has been inserted in the (manual mode)

check reader; to be used by the application to
generate a message to the operator to insert a
check.

WFS_EXEE_CHK_MEDIAINSERTED A check was inserted; this is only issued following
the above event.

WFS_EXEE_CHK_FIELDERROR A fatal error occurred while processing a field.
WFS_EXEE_CHK_FIELDWARNING A non-fatal error occurred while processing a field.
WFS_USRE_CHK_INKTHRESHOLD The toner or ink supply is low or empty or the

printing contrast with ribbon is weak or not
sufficient, operator intervention is required. Note
that this event is sent only once, at the point at
which the toner becomes low or empty. It is sent
with WFS_CHK_INKLOW or
WFS_CHK_INKOUT status.

Comments. The timeout parameter (dwTimeOut) in the WFSExecute request that passes this command
should always be large enough to accommodate prompting the operator to insert a check, having
the operator do so, and processing the check.

The application will use lpszOutputField or lpszUNICODEOutputField as an input parameter,
depending upon the service provider capabilities. Legacy (non-UNICODE aware) applications
will only use the lpszOutputField field. UNICODE applications can use either the lpszOutputField
or lpszUNICODEOutputField fields, provided the service provider is UNICODE compliant.

5.2 WFS_CMD_CHK_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the CHK device to a known good state. This command does not over-ride a lock obtained by
another application or service handle.

The device will attempt to either retain, eject or will perform no action on any media found in the
CHK as specified in the lpwResetIn parameter. It may not always be possible to retain or eject the
media as specified because of hardware problems. If a media is found inside the device the
WFS_SRVE_CHK_MEDIADETECTED event will inform the application where media was
actually moved to. If no action is specified the media will not be moved even if this means that the
CHK cannot be recovered.

Input Param LPWORD lpwResetIn ;
 Specifies the action to be performed on any media found within the CHK as one of the following
values :
Value Meaning
WFS_CHK_RESET_EJECT Eject any media found.
WFS_CHK_RESET_RETAIN Retain any media found.

Page 20
CWA 14050-7:2000

WFS_CHK_RESET_NOACTION No Action should be performed on any media found.

If this value is a NULL pointer the service provider will determine where to move any media
found.

Output Param None

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_MEDIAJAM The media is jammed. Operator intervention is

required.
WFS_ERR_CHK_SHUTTERFAIL The device is unable to open and/or close it’s

shutter.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CHK_MEDIADETECTED This event is generated when a media is

detected during a reset.

Comments None

Page 21
CWA 14050-7:2000

21

6. Events

6.1 WFS_EXEE_CHK_NOMEDIA

Description This event specifies that the physical check must be inserted into the device in order for the
execute command to proceed.

Event Param LPSTR lpszUserPrompt ;

lpszUserPrompt
Points to a null-terminated string which identifies the prompt string which is configured for the
form (the USERPROMPT attribute of the XFSFORM section).

Comments The application may use the lpszUserPrompt in any manner it sees fit. For example, it might
display the string to the operator, along with a message that the check should be inserted.

6.2 WFS_EXEE_CHK_MEDIAINSERTED

Description This event specifies that the physical check has been inserted into the device.

Event Param None.

Comments The application may use this event to, for example, remove a message box from the screen telling
the user to insert the next check.

6.3 WFS_SRVE_CHK_MEDIAINSERTED

Description This event specifies that the physical check media has been inserted into the device without any
read execute command being executed. This event is only generated when media is entered in an
unsolicited manner.

Event Param None.

Comments None.

6.4 WFS_EXEE_CHK_FIELDERROR

Description This event specifies that a fatal error has occurred while processing a field.

Event Param LPWFSCHKFIELDFAIL lpFieldFail;

typedef struct _wfs_chk_field_failure
{
LPSTR lpszFormName;
LPSTR lpszFieldName;
WORD wFailure;
} WFSCHKFIELDFAIL, * LPWFSCHKFIELDFAIL;

lpszFormName
Points to the null-terminated form name.

lpszFieldName
Points to the null-terminated field name.

wFailure
Specifies the type of failure and can be one of the following:
Value Meaning
WFS_CHK_FIELDREQUIRED The specified field must be supplied by the

application.
WFS_CHK_FIELDSTATICOVWR The specified field is static and thus cannot

be overwritten by the application.
WFS_CHK_FIELDOVERFLOW The value supplied for the specified fields is

too long.

Page 22
CWA 14050-7:2000

WFS_CHK_FIELDNOTFOUND The specified field does not exist.
WFS_CHK_FIELDNOTREAD The specified field is not an input field.
WFS_CHK_FIELDNOTWRITE An attempt was made to write to an input

field.
WFS_CHK_FIELDHWERROR The specified field uses special hardware

(e.g., OCR) and an error occurred.
WFS_CHK_FIELDTYPENOTSUPPORTED The form field type is not supported with

device.

6.5 WFS_EXEE_CHK_FIELDWARNING

Description This event is used to specify that a non-fatal error has occurred while processing a field.

Event Param LPWFSPTRFIELDFAIL lpFieldFail;

as defined in the section describing WFS_EXEE_CHK_FIELDERROR.

Comments None.

6.6 WFS_USRE_CHK_INKTHRESHOLD

Description This user event is used to specify that the state of the ink reached a threshold.

Event Param LPWORD lpwInkThreshold;

Specified as one of the following flags:
Value Meaning
WFS_CHK_INKFULL The ink is in a good state.
WFS_CHK_INKLOW The ink is low.
WFS_CHK_INKOUT The ink is out.

Comments None.

6.7 WFS_SRVE_CHK_MEDIADETECTED

Description This service event is generated if media is detected during a reset (WFS_CMD_CHK_RESET).
The parameter on the event informs the application of the position of the media on the completion
of the reset.

Event Param LPWORD lpwResetOut;

Specifies the position of any media found within the CHK as one of the following values:
Value Meaning
WFS_CHK_MEDIAEJECTED The media was ejected.
WFS_CHK_MEDIARETAINED The media was retained.
WFS_CHK_MEDIAJAMMED The media is jammed in the device.

Page 23
CWA 14050-7:2000

23

7. Forms Language Usage

This section covers the usage of the forms language to accommodate check readers.

The forms language contains the FORMAT attribute in the XFSFIELD section. For check readers, the formatstring
is used to generate the delimiters for the check fields. For forms intended for use with check readers, the FORMAT
attribute is required. The FORMAT keyword is application defined, however may be interpreted by the service
provider. The following illustrates the use of the FORMAT keyword:

field Amount FORMAT ":NNNNNNNNNN:"
field AccountNum FORMAT "0000NNNNNN<"
field RouteTransit FORMAT ";NNNNNNNNN;"

Field names are not limited to the sample field names above. Punctuation marks are used in place of the standard
field separators. A capital N means a number to be read and returned. A zero (“0”) means an optional number
which, if present, is read and returned. Note that all fields on a check encoder line that have optional numbers should
place the zeros on the same end of the format string as an aid to the Service Provider in parsing the code line (for
instance, most check readers read the MICR line right to left, so optional numbers should always be on the left side
of fields which have them.).

Fields are processed in the order that they appear within the Form definition. If the device supports reading multiple
fonts, the FONT attribute of the XFSFIELD section might be significant. The name of the font (e.g. CMC7, E13B,
etc), given here, will cause the check reader to use the appropriate font.

For endorsing checks, the field description specifies the “front” or “back” of the check using the SIDE attribute, and
position relative to the trailing or (usually) leading edge of the check.

7.1 Definition Syntax

The syntactic rules for form, field and media definitions are as follows:

� White space space, tab

� Line continuation backslash (\)

� Line termination CR, LF, CR/LF; line termination ends a “keyword section” (a keyword and its
value[s])

� Keywords must be all upper case

� Names (field/media/font names) any case; case is preserved; service providers are case
sensitive

� Strings all strings must be enclosed in double quote characters (");
standard C escape sequences are allowed.

� Comments start with two forward slashes (//), end at line termination

 Other notes:

� The values of a keyword are separated by commas.

� If a keyword is present, all its values must be specified; default values are used only if the keyword is absent.

� Values that are character strings are marked with asterisks in the definitions below, and must be quoted as
specified above.

� All forms can be represented using either ISO 646 (ANSI) or UNICODE character encoding. If the UNICODE
representation is used then all Names and Strings are restricted to an internal representation of ISO 646 (ANSI)
characters. Only the INITIALVALUE and FORMAT keyword values can have double byte values outside of
the ISO 646 (ANSI) character set.

Page 24
CWA 14050-7:2000

� If forms character encoding is UNICODE then, consistent with the UNICODE standard, the file prefix must be
in little endian (xFFFE) or big endian (xFEFF) notation, such that UNICODE encoding is recognized.

7.2 XFS form/media definition files in multi-vendor environments

Although for most Service Providers directory location and extension of XFS form/media definition files are
configurable through the registry, the capabilities of Service Providers and or actual hardware may vary. Therefore
the following considerations should be taken into account when applications use XFS form definition files with the
purpose of running in a multi-vendor environment:

- Physical dimensions of checks are not identical
- Just-in-time form loading may not be supported by all Service Providers, which makes it impossible to create

dynamic form files just before scanning
- Some form/media definition keywords may not be supported due to limitations of the hardware or software

7.3 Form and Media Measurements

The UNIT keyword sections of the form and media definitions specify the base horizontal and vertical resolution
as follows:

� the base value specifies the base unit of measurement

� the x and y values specify the horizontal and vertical resolution as fractions of the base value (e.g., an x
value of 10 and a base value of MM means that the base horizontal resolution is 0.1mm).

The base resolutions thus defined by the UNIT keyword section of the form definition are used as the units of the
form definition keyword sections:

� SIZE (width and height values)

� ALIGNMENT (xoffset and yoffset values)

and of the field definition keyword sections:

� POSITION (x and y values)

� SIZE (width and height values)

The base resolutions thus defined by the UNIT keyword section of the media definition are used as the units of the
media definition keyword sections:

� SIZE (width and height values)

� CHECKAREA (x, y, width and height values)

� RESTRICTED (x, y, width and height values)

Page 25
CWA 14050-7:2000

25

7.4 Form Definition

XFSFORM formname

BEGIN
(required) UNIT base, Base resolution unit for form definition

MM
INCH
ROWCOLUMN

x, Horizontal base unit fraction
y Vertical base unit fraction

(required) SIZE width, Width of form
height Height of form

ALIGNMENT alignment, Alignment of the form on the physical medium:
TOPLEFT (default)
TOPRIGHT
BOTTOMLEFT
BOTTOMRIGHT

xoffset, Horizontal offset relative to the horizontal alignment
specified by alignment. Always specified as a positive
value (i.e., if aligned to the right side of the medium,
means offset the form to the left). (default = 0)

yoffset Vertical offset relative to the vertical alignment specified by
alignment. Always specified as a positive value (i.e., if
aligned to the bottom of the medium, means offset the
form upward). (default = 0)

VERSION major, Major version number
minor, Minor version number
date*, Creation/modification date
author* Author of form

(required) LANGUAGE languageID Language used in this form – a 16 bit value (LANGID)
which is a combination of a primary (10 bits) and a
secondary (6 bits) language ID (This is the standard
language ID in the Win32 API; standard macros support
construction and decomposition of this composite ID)

COPYRIGHT copyright* Copyright entry

TITLE title* Title of form

COMMENT comment* Comment section

USERPROMPT prompt* Prompt string for user interaction

[XFSFIELD fieldname One field definition (as defined in the next section) for each
field in the form

BEGIN
 . . .
END]

END

Page 26
CWA 14050-7:2000

7.5 Field Definition

XFSFIELD fieldname

BEGIN

(required) POSITION x, Horizontal position (relative to left or right side of form,
depending upon HPOSITION keyword)

y Vertical position (relative to top or bottom of form,
depending upon VPOSITION keyword)

HPOSITION Horizontal field positioning relative to:
LEFT (default)
RIGHT

VPOSITION Vertical field positioning relative to:
TOP
BOTTOM (default)

TYPE fieldtype Type of field:
 GRAPHIC
 MICR (default)
 OCR
 TEXT

LANGUAGE languageID Language used in this field – a 16 bit value (LANGID)
which is a combination of a primary (10 bits) and a
secondary (6 bits) language ID (This is the standard
language ID in the Win32 API; standard macros support
construction and decomposition of this composite ID)
If unspecified defaults to form definition LANGUAGE
specification.

SIDE Side of check.
FRONT (default)
BACK

CLASS class Field class
OPTIONAL (default)
STATIC
REQUIRED

ACCESS access Access rights of field
WRITE (default)
READ

OVERFLOW overflow Action on field overflow:
TERMINATE (default)
TRUNCATE
BESTFIT (the service provider fits the data

into the field as well as it can)
OVERWRITE (a contiguous write)
WORDWRAP

CASE case Convert field contents to
NOCHANGE (default)
UPPER
LOWER

HORIZONTAL justify Horizontal alignment of field contents
LEFT (default)
RIGHT
CENTER
JUSTIFY

Page 27
CWA 14050-7:2000

27

VERTICAL justify Vertical alignment of field contents
BOTTOM (default)
CENTER
TOP

(required) SIZE width, Field width

height Field height

STYLE style Display attributes as a combination of the following,
ORed together using the "|" operator:

NORMAL (default)
BOLD
ITALIC
UNDER (single underline)
DOUBLEUNDER (double underline)
DOUBLE (double width)
TRIPLE (triple width)
QUADRUPLE (quadruple width)
STRIKETHROUGH
ROTATE90 (rotate +90 degrees clockwise)
ROTATE270 (rotate +270 degrees clockwise)
UPSIDEDOWN (upside down)
PROPORTIONAL (proportional spacing)
DOUBLEHIGH
TRIPLEHIGH
QUADRUPLEHIGH
CONDENSED
SUPERSCRIPT
SUBSCRIPT
OVERSCORE
LETTERQUALITY
NEARLETTERQUALITY
DOUBLESTRIKE
OPAQUE (If omitted then default attribute is
transparent)

Some of these Styles may be mutually exclusive, or
may combine to provide unexpected results.

SCALING scalingtype Information on how to size the GRAPHIC within the
field:

BESTFIT (default) scale to size
indicated

ASIS render at native size
MAINTAINASPECT scale as close as possible to

size indicated while
maintaining the aspect ratio
and not losing graphic
information.

SCALING is only relevant for GRAPHIC field types.
FONT fontname* For MICR or OCR WRITE field, in some cases this

predefines the following parameters:

 CMC7

 E13B

For TEXT field, font name is interpreted by the service
provider. In some cases it may indicate printer resident
fonts, and in others it may indicate the name of a
downloadable font.

 Definition POINTSIZE pointsize Point size
 Information CPI cpi Characters per inch

Page 28
CWA 14050-7:2000

LPI lpi Lines per inch
(required) FORMAT formatstring* For MICR or OCR READ field, the formatstring is used

to generate the delimiters for the check fields; its
usage is application defined. The FORMAT keyword
may also be interpreted by the service provider.

To have the MICR/OCR check line fields parsed, the
field names must be defined. The FORMAT keyword
for three fields are illustrated as follows:

 Amount FORMAT “;NNNNNNNNNN;”

 AccountNum FORMAT “0000NNNNNN<”

 RouteTransit FORMAT “;NNNNNNNNN;”

Field names are not limited to the above sample field
names.

To define the entire MICR/OCR check line as an
unparsed field to be returned to the application, a field
must be defined with the name “MICROCRDATA”.

Punctuation marks are used in place of the standard
field separators. A capital N means a number is to be
read and returned. A zero (“0”) means an optional
number which, if present, is read and returned.

Note that all fields on a check encoder line that have
optional numbers should place the zeros on the same
end of the format string as an aid to the Service
Provider in parsing the code line (for instance, most
check readers read the MICR line right to left, so
optional numbers should always be on the left side of
fields which have them.).

For TEXT field, This is an application defined input
field describing how the application should format the
data. This may be interpreted by the service provider.

INITIALVALUE value* Initial value, for GRAPHIC type fields, this value may
contain the filename of the graphic image. The type of
this graphic will be determined by the file extension (e.g.
BMP for Windows Bitmap). Graphic file name may be
full or partial path.
For example “C:\XFS\XFSLOGO.BMP” illustrates use of
full path name.

A file name specification of “LOGO.BMP” illustrates
partial path name. In this instance file is obtained from
current directory.

END

Page 29
CWA 14050-7:2000

29

7.6 Media Definition

The media definition determines those characteristics that result from the combination of a particular media type
together with a particular check. The aim is to make it easy to move forms between different checks which might
have different constraints on how they handle a specific media type. It is the service provider's responsibility to
ensure that the form definition does not specify the reading/writing of any fields that conflict with the media
definition. An example of such a conflict might be that the form definition asks for a field to be read/written in an
area that the media definition defines as a restricted area.

XFSMEDIA medianame*

BEGIN

TYPE type Predefined media types are:
CHECK

(required) UNIT base,

x,
y,

Base resolution unit for media definition
MM
INCH
ROWCOLUMN

Horizontal base unit fraction
Vertical base unit fraction

(required) SIZE width, Width of physical media
height Height of physical media

CHECKAREA x, Check area relative
y, to top left corner
width, of physical media
height (default = physical size of media)

RESTRICTED x, Restricted area relative to
y, to top left corner
width, of physical media
height (default = no restricted area)

END

Page 30
CWA 14050-7:2000

8. C - Header file

/**
* *
* xfschk.h XFS - Check reader/scanner (CHK) definitions *
* *
* Version 3.00 (10/18/00) *
* *
***/

#ifndef __INC_XFSCHK__H
#define __INC_XFSCHK__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* value of WFSCHKCAPS.wClass */

#define WFS_SERVICE_CLASS_CHK (5)
#define WFS_SERVICE_VERSION_CHK (0x0003) /* Version 3.00 */
#define WFS_SERVICE_NAME_CHK "CHK"

#define CHK_SERVICE_OFFSET (WFS_SERVICE_CLASS_CHK * 100)

/* CHK Info Commands */

#define WFS_INF_CHK_STATUS (CHK_SERVICE_OFFSET + 1)
#define WFS_INF_CHK_CAPABILITIES (CHK_SERVICE_OFFSET + 2)
#define WFS_INF_CHK_FORM_LIST (CHK_SERVICE_OFFSET + 3)
#define WFS_INF_CHK_MEDIA_LIST (CHK_SERVICE_OFFSET + 4)
#define WFS_INF_CHK_QUERY_FORM (CHK_SERVICE_OFFSET + 5)
#define WFS_INF_CHK_QUERY_MEDIA (CHK_SERVICE_OFFSET + 6)
#define WFS_INF_CHK_QUERY_FIELD (CHK_SERVICE_OFFSET + 7)

/* CHK Command Verbs */

#define WFS_CMD_CHK_PROCESS_FORM (CHK_SERVICE_OFFSET + 1)
#define WFS_CMD_CHK_RESET (CHK_SERVICE_OFFSET + 2)

/* CHK Messages */

#define WFS_EXEE_CHK_NOMEDIA (CHK_SERVICE_OFFSET + 1)
#define WFS_EXEE_CHK_MEDIAINSERTED (CHK_SERVICE_OFFSET + 2)
#define WFS_SRVE_CHK_MEDIAINSERTED (CHK_SERVICE_OFFSET + 3)
#define WFS_EXEE_CHK_FIELDERROR (CHK_SERVICE_OFFSET + 4)
#define WFS_EXEE_CHK_FIELDWARNING (CHK_SERVICE_OFFSET + 5)
#define WFS_USRE_CHK_INKTHRESHOLD (CHK_SERVICE_OFFSET + 6)
#define WFS_SRVE_CHK_MEDIADETECTED (CHK_SERVICE_OFFSET + 7)

/* values of WFSCHKSTATUS.fwDevice */

#define WFS_CHK_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CHK_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_CHK_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CHK_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CHK_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CHK_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CHK_DEVBUSY WFS_STAT_DEVBUSY

/* values of WFSCHKSTATUS.fwMedia, WFS_SRVE_CHK_MEDIADETECTED event */

#define WFS_CHK_MEDIANOTSUPP (0)
#define WFS_CHK_MEDIANOTPRESENT (1)
#define WFS_CHK_MEDIAREQUIRED (2)

Page 31
CWA 14050-7:2000

31

#define WFS_CHK_MEDIAPRESENT (3)
#define WFS_CHK_MEDIAJAMMED (4)
#define WFS_CHK_MEDIAEJECTED (5)
#define WFS_CHK_MEDIARETAINED (6)

/* values of WFSCHKSTATUS.fwInk, lpwInkThreshold */

/* values of WFSCHKCAPS.fwType */
#define WFS_CHK_TYPECHK (1)

#define WFS_CHK_INKNOTSUPP (0)
#define WFS_CHK_INKFULL (1)
#define WFS_CHK_INKLOW (2)
#define WFS_CHK_INKOUT (3)

/* values of WFSCHKCAPS.fwStamp */

#define WFS_CHK_STAMPNONE (1)
#define WFS_CHK_STAMPFRONT (2)
#define WFS_CHK_STAMPBACK (3)
#define WFS_CHK_STAMPBOTH (4)

/* values of WFSCHKCAPS.wImageCapture */

#define WFS_CHK_ICAPNONE (1)
#define WFS_CHK_ICAPFRONT (2)
#define WFS_CHK_ICAPBACK (3)
#define WFS_CHK_ICAPBOTH (4)

/* values of WFSCHKCAPS.fwCharSupport, WFSCHKFRMHEADER.fwCharSupport */

#define WFS_CHK_ASCII (0x0001)
#define WFS_CHK_UNICODE (0x0002)

/* values of WFSCHKFRMHEADER.wBase, WFSCHKFRMMEDIA.wBase */

#define WFS_CHK_INCH (1)
#define WFS_CHK_MM (2)
#define WFS_CHK_ROWCOLUMN (3)

/* values of WFSCHKFRMHEADER.wAlignment */

#define WFS_CHK_TOPLEFT (1)
#define WFS_CHK_TOPRIGHT (2)
#define WFS_CHK_BOTTOMLEFT (3)
#define WFS_CHK_BOTTOMRIGHT (4)

/* values of WFSCHKFRMMEDIA.fwMediaType */

#define WFS_CHK_MEDIACHECK (1)

/* values of WFSCHKFRMFIELD.fwType */

#define WFS_CHK_FIELDTEXT (1)
#define WFS_CHK_FIELDMICR (2)
#define WFS_CHK_FIELDOCR (3)
#define WFS_CHK_FIELDGRAPHIC (4)

/* values of WFSCHKFRMFIELD.fwClass */

#define WFS_CHK_CLASSSTATIC (1)
#define WFS_CHK_CLASSOPTIONAL (2)
#define WFS_CHK_CLASSREQUIRED (3)

/* values of WFSCHKFRMFIELD.fwAccess */

#define WFS_CHK_ACCESSREAD (1)
#define WFS_CHK_ACCESSWRITE (2)

Page 32
CWA 14050-7:2000

/* values of WFSCHKFRMFIELD.fwOverflow */

#define WFS_CHK_OVFTERMINATE (0)
#define WFS_CHK_OVFTRUNCATE (1)
#define WFS_CHK_OVFBESTFIT (2)
#define WFS_CHK_OVFOVERWRITE (3)
#define WFS_CHK_OVFWORDWRAP (4)

/* values of WFSCHKINPROCESSFORM.dwOptions */

#define WFS_CHK_OPT_AUTOFEED 0x0001
#define WFS_CHK_OPT_ICAPFRONT 0x0002
#define WFS_CHK_OPT_ICAPBACK 0x0004
#define WFS_CHK_OPT_NO_MICR_OCR 0x0008
#define WFS_CHK_OPT_NO_WRITE 0x0010

/* values of WFSCHKOUTPROCESSFORM.wFrontImageType, WFSCHKOUTPROCESSFORM.wBackImageType
*/

#define WFS_CHK_IMAGETIF (1)
#define WFS_CHK_IMAGEMTF (2)
#define WFS_CHK_IMAGEBMP (3)

/* input values to WFS_CMD_CHK_RESET */

#define WFS_CHK_RESET_EJECT (1)
#define WFS_CHK_RESET_CAPTURE (2)
#define WFS_CHK_RESET_NOACTION (3)

/* CHK Errors */

#define WFS_ERR_CHK_FORMNOTFOUND (-(CHK_SERVICE_OFFSET + 0))
#define WFS_ERR_CHK_FORMINVALID (-(CHK_SERVICE_OFFSET + 1))
#define WFS_ERR_CHK_MEDIANOTFOUND (-(CHK_SERVICE_OFFSET + 2))
#define WFS_ERR_CHK_MEDIAINVALID (-(CHK_SERVICE_OFFSET + 3))
#define WFS_ERR_CHK_MEDIAOVERFLOW (-(CHK_SERVICE_OFFSET + 4))
#define WFS_ERR_CHK_FIELDNOTFOUND (-(CHK_SERVICE_OFFSET + 5))
#define WFS_ERR_CHK_FIELDINVALID (-(CHK_SERVICE_OFFSET + 6))
#define WFS_ERR_CHK_FIELDERROR (-(CHK_SERVICE_OFFSET + 7))
#define WFS_ERR_CHK_REQDFIELDMISSING (-(CHK_SERVICE_OFFSET + 8))
#define WFS_ERR_CHK_FIELDSPECFAILURE (-(CHK_SERVICE_OFFSET + 9))
#define WFS_ERR_CHK_CHARSETDATA (-(CHK_SERVICE_OFFSET + 10))
#define WFS_ERR_CHK_MEDIAJAM (-(CHK_SERVICE_OFFSET + 11))
#define WFS_ERR_CHK_SHUTTERFAIL (-(CHK_SERVICE_OFFSET + 12))

/* values of WFSCHKFIELDFAIL.wFailure */

#define WFS_CHK_FIELDREQUIRED (1)
#define WFS_CHK_FIELDSTATICOVWR (2)
#define WFS_CHK_FIELDOVERFLOW (3)
#define WFS_CHK_FIELDNOTFOUND (4)
#define WFS_CHK_FIELDNOTREAD (5)
#define WFS_CHK_FIELDNOTWRITE (6)
#define WFS_CHK_FIELDHWERROR (7)
#define WFS_CHK_FIELDTYPENOTSUPPORTED (8)

/*===*/
/* CHK Info Command Structures */
/*===*/

typedef struct _wfs_chk_status
{
 WORD fwDevice;
 WORD fwMedia;
 WORD fwInk;
 LPSTR lpszExtra;
} WFSCHKSTATUS, * LPWFSCHKSTATUS;

typedef struct _wfs_chk_caps
{
 WORD wClass;

Page 33
CWA 14050-7:2000

33

 WORD fwType;
 BOOL bCompound;
 BOOL bMICR;
 BOOL bOCR;
 BOOL bAutoFeed;
 BOOL bEndorser;
 BOOL bEncoder;
 WORD fwStamp;
 WORD wImageCapture;
 LPSTR lpszFontNames;
 LPSTR lpszEncodeNames;
 WORD fwCharSupport;
 LPSTR lpszExtra;
} WFSCHKCAPS, * LPWFSCHKCAPS;

typedef struct _wfs_chk_frm_header
{
 LPSTR lpszFormName;
 WORD wBase;
 WORD wUnitX;
 WORD wUnitY;
 WORD wWidth;
 WORD wHeight;
 WORD wAlignment;
 WORD wOffsetX;
 WORD wOffsetY;
 WORD wVersionMajor;
 WORD wVersionMinor;
 WORD fwCharSupport;
 LPSTR lpszFields;
} WFSCHKFRMHEADER, * LPWFSCHKFRMHEADER;

typedef struct _wfs_chk_frm_media
{
 WORD fwMediaType;
 WORD wBase;
 WORD wUnitX;
 WORD wUnitY;
 WORD wSizeWidth;
 WORD wSizeHeight;
 WORD wCheckAreaX;
 WORD wCheckAreaY;
 WORD wCheckAreaWidth;
 WORD wCheckAreaHeight;
 WORD wRestrictedAreaX;
 WORD wRestrictedAreaY;
 WORD wRestrictedAreaWidth;
 WORD wRestrictedAreaHeight;
} WFSCHKFRMMEDIA, * LPWFSCHKFRMMEDIA;

typedef struct _wfs_chk_query_field
{
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
} WFSCHKQUERYFIELD, * LPWFSCHKQUERYFIELD;

typedef struct _wfs_chk_frm_field
{
 LPSTR lpszFieldName;
 WORD fwType;
 WORD fwClass;
 WORD fwAccess;
 WORD fwOverflow;
 LPSTR lpszInitialValue;
 LPWSTR lpszUNICODEInitialValue;
 LPSTR lpszFormat;
 LPWSTR lpszUNICODEFormat;
} WFSCHKFRMFIELD, * LPWFSCHKFRMFIELD;

/*===*/
/* CHK Execute Command Structures */
/*===*/

Page 34
CWA 14050-7:2000

typedef struct _wfs_chk_in_process_form
{
 LPSTR lpszFormName;
 LPSTR lpszMediaName;
 LPSTR lpszInputFields;
 LPSTR lpszOutputFields;
 LPWSTR lpszUNICODEOutputFields;
 DWORD dwOptions;
} WFSCHKINPROCESSFORM, * LPWFSCHKINPROCESSFORM;

typedef struct _wfs_chk_out_process_form
{
 LPSTR lpszInputFields;
 LPWSTR lpszUNICODEInputFields;
 WORD wFrontImageType;
 ULONG ulFrontImageSize;
 LPBYTE lpFrontImage;
 WORD wBackImageType;
 ULONG ulBackImageSize;
 LPBYTE lpBackImage;
} WFSCHKOUTPROCESSFORM, * LPWFSCHKOUTPROCESSFORM;

typedef struct _wfs_chk_field_failure
{
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
 WORD wFailure;
} WFSCHKFIELDFAIL, * LPWFSCHKFIELDFAIL;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCHK__H */

